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1. Introduction

Type II superstring Calabi-Yau compactifications are described by (2, 2) superconformal

sigma models with Calabi-Yau target manifolds. These field theories are however rather

complicated and, so, they are difficult to study. In 1988, Witten showed that a (2, 2)

supersymmetric sigma model on a Calabi-Yau space could be twisted in two different

ways, to give the so called A and B topological sigma models [1, 2]. Unlike the original

untwisted sigma model, the topological models are soluble: the calculation of observables

can be reduced to classical problems of geometry. For this reason, the topological sigma

models constitute an ideal field theoretic ground for the in depth study of 2-dimensional

supersymmetric field theories.

Witten’s analysis was restricted to the case where the sigma model target space ge-

ometry was Kähler. In a classic paper, Gates, Hull and Roceck [3] showed that, for a

2-dimensional sigma model, the most general target space geometry allowing for (2, 2) su-

persymmetry was bihermitean or Kähler with torsion geometry. This is characterized by

a riemannian metric gab, two generally non commuting complex structures K±
a
b and a

closed 3-form Habc, such that gab is hermitean with respect to both the K±
a
b and the K±

a
b

are parallel with respect to two different metric connections with torsion proportional to

±Habc [4 – 7]. This geometry is much more general than that considered by Witten, which

corresponds to the case where K+
a
b = ±K−

a
b and Habc = 0.
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In 2002, Hitchin formulated the notion of generalized complex geometry, which at the

same time unifies and extends the customary notions of complex and symplectic geometry

and incorporates a natural generalization of Calabi-Yau geometry [8]. Hitchin’s ideas were

developed by Gualtieri [9], who introduced the notion of generalized Kähler geometry and

showed that the bihermitean geometry of Gates, Hull and Roceck was equivalent to the

latter.

In refs. [10, 11], Kapustin and Kapustin and Li defined and studied the analogues of

A and B models for (2, 2) supersymmetric sigma models with H field and showed that

the results were naturally expressed in the language of generalized complex geometry.

Simultaneously, other attempts were made to construct sigma models based on general-

ized complex or Kähler geometry, by invoking world sheet supersymmetry, employing the

Batalin-Vilkovisky quantization algorithm, etc. [12 – 21]. All these attempts were somehow

unsatisfactory either because they remained confined to the analysis of geometrical aspects

of the sigma models or because they yielded field theories, which though interesting in

their own, were not directly suitable for quantization and showed no apparent kinship with

Witten’s A and B models.

In this paper, we present a topological sigma model with target space biKähler ge-

ometry. This geometry is characterized by a riemannian metric gab and two covariantly

constant generally non commuting complex structures K±
a
b, with respect to which gab is

hermitean. It is a particular case of the bihermitean geometry of ref. [3] corresponding to

Habc = 0.

The biKähler sigma model expondeded in the paper has all the basic features of a

topological sigma model as summarized below.

a. The action S possesses an odd symmetry δ.

b. δ is nilpotent on shell.

c. S is δ-exact on shell up to a topological term, with some weak restrictions on the

target space geometry.

d. The resulting field theory depends only on a certain combination of the target space

geometrical data.

The model also has other interesting features.

e. It is obtainable by gauge fixing the Hitchin model [19, 20] with generalized Kähler tar-

get space [9] according to the general philosophy of Alexandrov, Kontsevich, Schwartz

and Zaboronsky [22].

f. In the particular case K+
a
b = −K−

a
b, it reproduces Witten’s A topological sigma

model [1, 2]. It also yields topological sigma models for product structure and hy-

perKähler target space geometries.

Roughly speaking, the field content of the model consists of the fields of the A topo-

logical sigma model plus a further 1-form field. This latter becomes non propagating and
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decouples in the particular case of the A model, but it does not in the general case. Also,

the algebra of local topological observables is isomorphic to the Poisson-Lichnerowicz coho-

mology of a certain target space Poisson structure, which is isomorphic to the target space

de Rham cohomology in the particular case of the A model, but it is not in the general

case.

For these reasons, the biKähler sigma model introduced in the present paper is not

seemingly related to the (2, 2) supersymmetric sigma model by twisting in general, at

least in the form defined in [11]. This limits its relevance for string theory. However, its

very existence is interesting enough from a field theoretic point of view, not least as an

exemplification of the methodology of ref. [22].

As is well known, any topological field theory (of cohomological type) describes the

intersection theory of a certain moduli space in terms of local quantum field theory. Though

we have identified a set of equations, which, based on general arguments of topological field

theory, should define the moduli space underlying the biKähler sigma model, we have no

geometrical interpretation and no analytic control on it in general. It is possible that the

biKähler sigma model found in this paper, though satisfying a number of basic formal

prerequisites for a consistent topological field theory, may not pass a closer inspection at

the end. The investigation of this matter is left for future work.

The paper is organized as follows. In section 2, we review basic results of biKähler

geometry. In section 3, we introduce the biKähler sigma model and present its field content

and its action. In section 4, we analyze the symmetries of the model and show that

it possesses an odd symmetry δ, that is nilpotent on shell. In section 5, we prove the

topological nature of the model by showing that the action is δ-exact on shell up to a

topological term, when the target space geometry satisfies certain weak restrictions. We

further identify the set of equations describing the underlying moduli space. In section 6, we

study the local cohomology of δ and show its relation to Poisson-Lichnerowicz cohomology.

In section 7, we write down the action, the symmetries and the moduli space equations

of the biKähler sigma model of standard biKähler target geometries and show that the

biKähler model contains Witten’s A model as a particular case. In section 8, we show

that the biKähler model is obtainable by gauge fixing the Hitchin model with generalized

Kähler target space and use this result to show that the associated field theory depends

only on a certain combination of the target space geometrical data. Finally, in section 9 we

compare our results with the elegant geometrical constructions of refs. [10, 11] and discuss

briefly the open problems.

2. BiKähler geometry

Let M be a smooth manifold. An almost biKähler structure on M consists of a riemannian

metric gab and two almost complex structures K±
a
b, such that gab is hermitean with respect

to both K±
a
b:

K±
a
cK±

c
b = −δa

b, (2.1)

K±ab + K±ba = 0. (2.2)
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Here and below, indices are raised and lowered by using the metric gab. An almost biKähler

structure on M is a biKähler structure on M if the tensors K±
a
b are parallel with respect

to the Levi-Civita connection ∇a of gab

∇aK±
b
c = 0. (2.3)

As is well known, this implies that the almost complex structures K±
a
b are integrable and,

thus, that they are complex structures, and that the metric gab is Kähler with respect to

both the K±
a
b. In the following, we consider only biKähler structures.

The complex structures K±
a
b can be multiplied, being endomorphisms of the tangent

bundle TM of M . In this way, they generate an algebra of endomorphisms A. The

conventionally normalized anticommutator of the K±
a
b

Ca
b =

1

2
(K+

a
cK−

c
b + K−

a
cK+

c
b) (2.4)

belongs to the center of A. By this fact, it is easy to see that the most general element of

the algebra A is of the form

Xa
b = Za

b +
∑

α=±,0

Uα
a
cKα

c
b (2.5)

where K0
a
b is the conventionally normalized commutator of the K±

a
b

K0
a
b =

1

2
(K+

a
cK−

c
b − K−

a
cK+

c
b) (2.6)

and Za
b and Uα

a
b, α = ±, 0, are polynomials in Ca

b.

By (2.2), the K±ab are 2-forms. By (2.3), they are parallel and, thus, also closed1

∂[aK±bc] = 0 . (2.7)

They are in fact the Kähler forms of gab corresponding to the complex structures K±
a
b.

Besides the K±ab, there is another relevant 2-form in biKähler geometry, K0ab. K0ab is also

parallel and, thus, closed

∂[aK0bc] = 0. (2.8)

It is not difficult to show that K0ab is of type (2, 0) + (0, 2) and holomorphic with respect

to both complex structures K±
a
b.

Usually, in Kähler geometry, it is convenient to write the relevant tensor identities in the

complex coordinates of the underlying complex structure rather than in general coordinates.

In biKähler geometry, one is dealing with two generally non commuting complex structures.

One could similarly write the tensor identities in the complex coordinates of either complex

structures. In this case, however, the convenience of complex versus general coordinates

would be limited. We decided, therefore, to opt for general coordinates throughout the

paper. To this end, we define the complex tensors

Λ±
a
b =

1

2

(
δa

b − iK±
a
b

)
. (2.9)

1Here and below, the brackets [· · · ] denote full antisymmetrization of all enclosed tensor indices except

perhaps for those between bars | · · · |.
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The Λ±
a
b satisfy the relations

Λ±
a
cΛ±

c
b = Λ±

a
b, (2.10a)

Λ±
a
b + Λ±

a
b = δa

b, (2.10b)

Λ±
a
b = Λ±b

a. (2.10c)

Thus, Λ±
a
b are projector valued endomorphisms of the complexified tangent bundle TcM .

The corresponding projection subbundle of TcM is the ± holomorphic tangent bundles

T
1,0
± M .

The covariant constancy of the complex structures K±
a
b entails strong restrictions on

the Riemann tensor of the Levi-Civita connection,

RabceΛ±
e
d = RabedΛ±

e
c, (2.11a)

RaecfΛ±
e
[bΛ±

f
d] = 0, (2.11b)

∇fRabcgΛ±
f
[dΛ±

g
e] = 0 (2.11c)

and many other relations following either by complex conjugation or from the known sym-

metry properties of the Riemann tensor.

There are many interesting examples of biKähler geometries, which will be considered

in this paper. A biKähler structure gab, K±
a
b satisfying either conditions

K+
a
b = −K−

a
b, (K) (2.12a)

K+
a
b = K−

a
b (K ′) (2.12b)

is obviously equivalent to an ordinary Kähler structure gab, Ka
b, where

Ka
b = K−

a
b. (2.13)

Thus, there are two ways a Kähler structure can be embedded into a biKähler structure.

The resulting biKähler structures will be called of type K, K ′ in the following. Conversely,

a biKähler structure gab, K±
a
b can be viewed as a pair of Kähler structures with the same

underlying metric.

More generally, one can consider biKähler structures gab, K±
a
b such that

K0
a
b = 0 (P ) (2.14)

(cf. eq. (2.6)). (2.14) is equivalent to the statement that the endomorphisms K±
a
b commute.

We shall call these biKähler structures of type P . For these

La
b = K+

a
cK−

c
b (2.15)

is a riemannian product structure of the manifold M . The manifold M then factorizes

locally as a product M+1×M−1 such that the tangent bundles TM±1 are the ±1 eigenbun-

dles of the endomorphism La
b. From (2.12), it appears that type K, K ′ biKähler structures

are particular cases of type P biKähler structures. The corresponding product structures

La
b = ±δa

b are trivial.
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Another important class of biKähler structures gab, K±
a
b is defined by the condition

Ca
b = 0. (HK) (2.16)

(cf. eq. (2.4)), which we shall call of type HK. (2.16) is equivalent to the statement that

the endomorphisms K±
a
b anticommute. For these, the endomorphisms

K1
a
b = K+

a
b, K2

a
b = K−

a
b, K3

a
b = K0

a
b (2.17)

form a hyperKähler structure gab, Ki
a
b, i = 1, 2, 3. The manifold M then admits a triplet

of Kähler structures with the same underlying metric satisfying the quaternion algebra

Ki
a
cKj

c
b = −δijδ

a
b + εijkKk

a
b. (2.18)

3. The biKähler sigma model

The biKähler sigma model is a field theoretic realization of biKähler geometry. It is a

2-dimensional sigma model whose target space is a manifold M equipped with a biKähler

structure gab, K±
a
b and whose world sheet is a Riemann surface Σ, a surface endowed with

a complex structure. The fields of the model are the usual embedding field xa and three

further tensor valued form fields ya, ψa, χa. They are characterized by their target space

and world sheet global properties and by their ghost degree as summarized by the following

table.
field global type ghost degree total degree

xa Fun(Σ,M) 0 0

ya Ω0,0(Σ, x∗ΠT ∗M) 1 1

ψa Ω1,0(Σ, x∗ΠT
0,1
− M) −1 0

χa Ω1,0(Σ, x∗T
∗0,1
− M) 0 1

(3.1)

Here, Π is the parity reversion operator of vector bundles, which replaces the typical vector

fiber with its counterpart of opposite Grassmannality. The total degree of a field is the

sum of its world sheet form and ghost degrees and determines its statistics. The fields xa,

ya are real. The fields ψa, χa, conversely, are complex. They are conveniently viewed as

elements of Ω1,0(Σ, x∗ΠTcM), Ω1,0(Σ, x∗T ∗
cM) satisfying the constraints

ψa = Λ−
a
b(x)ψb, (3.2a)

χa = Λ−a
b(x)χb. (3.2b)

Note that these constraints break the symmetry of the target space biKähler geometry

with respect to the exchange of the two complex structures K±
a
b. Further, they couple

the complex structure K−
a
b of M , and the complex structure of Σ, since the target space

global properties of the fields involved depend on the latter in an essential way. We shall

analyze these issues in greater detail below in sections 8, 9.

The action S of the biKähler sigma model is given by2

S =

∫

Σ

{
− (iP 2Λ−ab + K−ab)(x)∂xa∂xb − igab(x)χaχb (3.3)

2Here and below, for any number of mixed rank 2 tensors A1
a

b, . . . , Ap
a

b, we set (A1+A2+· · ·+Ap)
a

b =

A1
a

b+A2
a

b+· · ·Ap
a

b and A1A2 · · ·Ap
a

b = A1
a

c1A2
c1

c2 · · ·Ap
cp−1

b. Note laso that (1)a
b = δa

b, (1)ab = gab,

etc.
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+ (1 + P )Jab(x)
(
χa + gac(x)∂xc

)(
χb + gbd(x)∂xd

)

+ Ma
b(x)(ψb∇ya + ψb∇ya) + Ra

cedP
eb(x)ψcψdyayb

}
,

where the tensors Ja
b, P a

b, Ma
b are given by

Ja
b =

1

2
(K+ + K−)ab, P a

b =
1

2
(K+ − K−)ab, (3.4a)

Ma
b =

1

2
(1 + K+)(1 + K−)ab (3.4b)

and ∇ is the pull-back by xa of the Levi-Civita connection

∇ = ∂ ± Γ·
·a(x)∂xa. (3.5)

In (3.3), wedge multiplication of forms is understood. Due the large number of relations

satisfied by the basic tensors of biKähler geometry and because of the constraints (3.2), S

can be cast in several other equivalent forms. The one shown above is the most compact,

which we were able to find.

The classical field equations associated with the action S are easily derived:

iP 2
ab(x)∇∂xb + ∇aR

b
dfeP

fc(x)ψdψeybyc (3.6a)

+
[
Rd

ecaM
e
b(x)ψb∂xc + (1 + P )Jb

a(x)∇χb + c.c.
]

= 0,

Ma
b(x)∇ψb + R[a

decP
|e|b](x)ψcψdyb + c.c. = 0, (3.6b)

MΛ−
b
a(x)∇yb + Rb

fedΛ−
f

aP
ec(x)ψdybyc = 0, (3.6c)

Λ−(1 + P )Ja
b(x)∂xb + Λ−P (1 + J)ab(x)χb = 0. (3.6d)

In obtaining (3.6c), (3.6d), one must take into due account the constraints (3.2).

The definition of the action S of the biKähler model given in eq. (3.3) may seem rather

arbitrary at this stage. It can be justified only a posteriori by its remarkable properties

shown in the following. Ultimately, these properties can be traced back to just a basic one:

the origin of the biKähler model as a gauge fixed form of a suitable generalized Kähler

Hitchin model [19, 20], as we shall see in section 8.

The action S may be modified by the addition of topological terms of the form

Stop =

∫

Σ
x∗ω =

∫

Σ
ωab(x)∂xa∂xb, (3.7)

where ωab is a closed 2-form, without changing the field equations and the infinitesimal

symmetries of the action. For instance

ωab =
∑

α=±,0

cαKαab, (3.8)

where the cα are real coefficients. The terms
∫

Σ

(
− K− + (1 + P )J

)
ab(x)∂xa∂xb (3.9)

appearing in the expression of the action S, eq. (3.3), are precisely of this form. Thus their

inclusion is somewhat conventional.
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4. The symmetries of the model

The biKähler sigma model action S introduced in section 3 exhibits a bosonic symmetry

associated with the following infinitesimal even variations

δghxa = 0, (4.1a)

δghya = −ya, (4.1b)

δghψa = ψa, (4.1c)

δghχa = 0, (4.1d)

where multiplication by an infinitesimal real even parameter is tacitly understood, so that

δghS = 0. (4.2)

It is easy to see that this nothing but ghost number symmetry. The associated symmetry

current is

I = −iMa
b(x)ψbya + c.c. (4.3)

as is easily verified.

The action S exhibits also a fermionic symmetry associated with the following infinites-

imal odd variations

δxa = P ab(x)yb, (4.4a)

δya = −Γb
adP

dc(x)ybyc, (4.4b)

δψa = −Γa
bdP

dc(x)ψbyc + Λ−(J2 + J + 1)ab(x)∂xb + Λ−P ab(x)χb, (4.4c)

δχa = −Γb
adP

dc(x)χbyc − Λ−Ja
b(x)∇yb + Λ−a

fRb
fedP

ec(x)ψdybyc, (4.4d)

where multiplication by an infinitesimal real odd parameter is tacitly understood, so that

δS = 0. (4.5)

The verification of (4.5) is lengthy but totally straightforward. The associated symmetry

current is

S =
(
i(J2 + J + 1)J − P 2PΛ−

)
a
b(x)∂xbpa + i(P 2 + P )Jab(x)χapb + c.c. (4.6)

The symmetry δ is nilpotent on shell, as it appears from the following computation

δ2xa = 0, (4.7a)

δ2ya = 0, (4.7b)

δ2ψa = −iΛ+Λ−
ga(x)

[
MΛ−

b
g(x)∇yb + Rb

fedΛ−
f

gP
ec(x)ψdybyc

]
, (4.7c)

δ2χa = Rc
fehΛ−

f
aP

hd(x)
[
Λ−(1 + P )Je

b(x)∂xb (4.7d)

+ Λ−P (1 + J)eb(x)χb

]
ycyd

– 8 –
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and from (3.6c), (3.6d). The verification of (4.7) is also lengthy but straightforward. We

note that only two of the four field equations, namely (3.6c), (3.6d), are involved. In more

precise terms, (4.7) states that δ is nilpotent on the quotient of the algebra of all field

functionals by the bilateral ideal generated by the field equations (3.6c), (3.6d). If we

denote by ≈ equality on the quotient algebra, we may write

δ2 ≈ 0. (4.8)

However, for the sake of brevity, one says simply that δ is nilpotent on shell. The study

the cohomology associated with δ is naturally the next step of our analysis.

5. The topological nature of the model

We have seen above that the biKähler sigma model is a sigma model with an odd symmetry

that is nilpotent on shell (cf. eqs. (4.5), (4.8)). This makes it akin to some extent to the

existent topological models [1, 2]. These latter however have a further property, that is

crucial to ensure their topological nature: the action is δ exact on shell up to topological

terms. The natural question arises about whether the biKähler sigma model we illustrated

above has the same property.

A gauge fermion Ψ is a local functional of the fields of ghost number −1. We are

looking for a gauge fermion Ψ such that

S ≈ δΨ + Stop, (5.1)

where Stop is some topological functional of xa of the form (3.7) and ≈ denotes equality

on shell in the sense explained at the end of section 4. A gauge fermion Ψ with the above

property exists for the A topological sigma model, as shown by Witten long ago [1, 2]. It

is natural to wonder whether a gauge fermion Ψ exists for the biKähler sigma model. We

found this problem unexpectedly difficult. In fact, we have not been able to show that

such a Ψ exists for an arbitrary biKähler target geometry. However, as we show below, we

succeeded in finding a Ψ such that

S ≈ δΨ + Stop + Ω, (5.2)

where Ω is a “topological anomaly”, which is generally non vanishing, but which does

vanish for a subclass of biKähler structures, defined by a week condition, which moreover

contains all the standard examples illustrated in section 2.

Two scenarios are thus possible. In the first scenario, a gauge fermion Ψ satisfying (5.1)

exists, but it is rather complicated, making its computation prohibitively difficult. In the

second scenario, a gauge fermion Ψ does not exist in general. In such a case, it would be

important to characterize the corresponding biKähler structures.

To begin with, we recall that we are tackling a cohomological problem, so that its solu-

tion, if it exists, is certainly not unique, but it is affected by the customary cohomological

ambiguities. We may start with an ansatz of the form

Ψ =

∫

Σ

i

2

[
Aab(x)(ψa∂xb − ψa∂xb) + Ba

b(x)(χaψ
b − χaψ

b)
]
, (5.3)
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where Aab, Ba
b are real tensors satisfying

∇cAab = 0, ∇cB
a
b = 0. (5.4)

Next, we compute δΨ using (4.4) and simplify the resulting expression using the con-

straints (3.2) and the field equations (3.6c), (3.6d) only. Finally, by a procedure of trial

and error, we adjust the expressions of Aab, Ba
b, in such a way to enforce (5.1) or (5.2).

In this way, we find that a relation of the form (5.2) holds if Aab, Ba
b are given by

Aab = gab +
1

Z2 − 16
(−1 − C + 4P )J(1 + C + 4J − 4P )ab, (5.5a)

Ba
b = (1 + P )Ja

b −
4

Z2 − 16
(1 + C)(2 + P )Ja

b, (5.5b)

where

Ca
b = (J2 − P 2)ab (5.6)

is nothing but the central tensor (2.4) and Za
b is some function of Ca

b subject to the only

condition that the endomorphisms (Z ±4)ab are pointwise invertible on M . In such a case,

the topological term Stop is given by

Stop =

∫

Σ

[1

2
P (2 + J)ab(x) +

1

2

( ±1

Z ± 4
−

1

Z2 − 16
(C ± Z + 5)

)
(5.7)

× P
(
2(−1 + C) + (1 + C)J

)
ab(x)

]
∂xa∂xb,

while the topological anomaly Ω reads

Ω =

∫

Σ

i

2(Z2 − 16)

(
(C + 5)2 − Z2

)
PJa

b(x) (5.8)

×
(
χa∂xb − χa∂xb + ψb∇ya − ψb∇ya

)
.

We note that the integrand of Stop is indeed a closed form, since the tensors Jab, Pab, PJab

are antisymmetric, the tensors Cab, Zab are symmetric and central and all are covariantly

constant. Furthermore, Stop does not depend on the sign choice in the integrand, as is easy

to check.

The topological anomaly Ω vanishes in a number of cases. If (C+5±4)ab are pointwise

invertible on M , we can chose

Za
b = ±(C + 5)ab (5.9)

and make Ω vanish. The biKähler structures of type HK (see section 2) fall in this

category, since, for these, Ca
b = 0. Alternatively, we see that Ω vanishes when PJa

b = 0.

The biKähler structures of type P , in particular those of types K, K ′, (see section 2), have

this property, since

K0
a
b = 2PJa

b (5.10)

and, for these, K0
a
b = 0. It would be interesting to characterize the biKähler structures,

if any, for which the topological anomaly Ω fails to vanish.
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When the target space biKähler geometry is such that the topological anomaly Ω does

indeed vanish, we expect the corresponding biKähler sigma model to be a topological field

theory, in analogy to what happens in Witten’s A sigma model [1, 2]. In the A model,

the topological correlators are independent from the world sheet complex structure and

from the target manifold complex structure, but they do depend on the target manifold

symplectic structure. For similar reasons, one would expect the biKähler model topological

correlators to be independent from the world sheet complex structure and to depend only

on a proper subset of the target space geometrical data. In section 8, we shall identify

precisely this latter.

The above analysis provides strong evidence that the biKähler sigma model might

indeed be a topological field theory akin to the A sigma model. One of the most basic

features of topological field theories of cohomological type is that the functional measure

of the associated quantum field theories localizes on the space of field configurations which

are fixed point for the topological BRST charge [23]. In our case, these are the field

configurations xa, ya, ψa, χa satisfying

δxa = 0, (5.11a)

δya = 0, (5.11b)

δψa = 0, (5.11c)

δχa = 0. (5.11d)

From (4.4), the (5.11) are equivalent to the following set of equations

P ab(x)yb = 0, (5.12a)

Λ−(J2 + J + 1)ab(x)∂xb + Λ−P ab(x)χb = 0, (5.12b)

Λ−Ja
b(x)∇yb = 0. (5.12c)

The geometrical interpretation of these equations is not known to us, except for certain

particular cases. We expect also that they may suffer some kind of disease for the biKähler

structures, for which the topological anomaly Ω does not vanish (if any), and, perhaps,

for an even larger class of such structures. A detailed investigation of these matters is

beyond the scope of this paper. Here, we shall restrict ourselves to making a few general

observations. When the endomorphism P a
b is pointwise invertible on M (e. g. for a type

K or HK biKähler structure), eq. (5.12a) becomes equivalent to the equation

ya = 0 (5.13)

and eq. (5.12c) is identically satisfied. Eq. (5.12b) is a kind of generalized holomorphy

condition for the embedding field xa. For a type P biKähler structure, it reduces to

Λ−(J2 + J + 1)ab(x)∂xb = 0, (5.14)

on account of (3.2b). In particular, for a type K, K ′ structure, it yields a the customary

notion of holomorphy

Λ−
a
b(x)∂xb = 0. (5.15)
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We conclude this section by recalling that, in the A model, the field configurations

annihilated by the topological BRST charge make the gauge fermion Ψ vanish. Apparently,

a similar property does not hold in general for the gauge fermion Ψ of the biKähler sigma

model found above. We do not know whether this is a cohomological artifact of such Ψ or,

else, it is a basic feature of the model.

6. The local cohomology of δ

In this section, we shall study some aspects of the local cohomology of δ. In view of the

topological nature of the biKähler sigma model, shown above, this is an important step of

our analysis, because of its relevance for the classification of topological observables and

the study of the properties of their correlators.

Relations (4.4a), (4.4b) and (4.7a), (4.7b) show that the fields xa, ya generate a sub-

cohomology of the δ cohomology, which we shall analyze next. For any p-vector Xa1...ap ,

set

OX =
1

p!
Xa1...ap(x)ya1

. . . yap . (6.1)

This is the most general local field containing only the fields xa, ya and no derivatives.

Further, it is evident that O maps isomorphically the algebra of multivectors into the

algebra of such local fields formed with xa, ya. Using (4.4a), (4.4b) and the fact that

∇cP
ab = 0, it is easy to show that

δOX = OσPLX , (6.2)

where σPLXa1...ap+1 is the p + 1-vector given by

σPLXa1...ap+1 = −(p + 1)P [a1|c|∂cX
a2...ap+1] +

(p + 1)p

2
∂cP

[a1a2X |c|a3...ap+1]. (6.3)

Thus,

δOX = 0 ⇔ σPLXa1...ap+1 = 0, (6.4a)

OX = δOY ⇔ Xa1...ap = σPLY a1...ap . (6.4b)

The above construction has a simple geometric interpretation. Since ∇cP
ab = 0, P ab

is a Poisson 2-vector on M defining a Poisson structure P [24]. σPL is the well known

associated nilpotent Poisson-Lichnerowicz operator on multivectors [24]. (6.2) shows that

O is a cochain isomorphism of the Poisson-Lichnerowicz multivector cochain complex,

(
� ∗(M), σPL), into the cochain complex of local fields formed by xa, ya with no derivatives,

(�xy, δ). Thus, the cohomology of the latter, H∗(�xy, δ), is isomorphic to the Poisson-

Lichnerowicz multivector cohomology H∗
PL(M,P ).

For any p-form ωa1...ap , define the p-vector

#ωa1...ap = P a1b1 . . . P apbpωb1...bp
. (6.5)

# maps the algebra of forms into the algebra of multivectors. As is well known, # defines

a cochain homomorphism of the de Rham differential form cochain complex, (Ω∗(M), ddR),
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into the Poisson-Lichnerowicz multivector cochain complex (
� ∗(M), σPL), and, thus, also

a homomorphism of the de Rham cohomology, H∗
dR(M), into the Poisson-Lichnerowicz

cohomology, H∗
PL(M,P ), [24]. This homomorphism is an isomorphism, if P is pointwise

invertible, i.e. it comes from a symplectic structure. Composing the maps # and O, we

have a homomorphism of H∗
dR(M) into H∗(�xy, δ), which is an isomorphism when P is

pointwise invertible.

Let Xa1...ap be a p-vector such that σPLXa1...ap+1 = 0. Then, by (6.2), δOX = 0.

Starting from OX , one can generate a triplet of local δ cohomology classes, by using the

well known descent formalism [1, 2]. This is based on the mod d cohomology of δ, or,

equivalently, on the cohomology of δ + d, where d is the de Rham differential of Σ. Let us

write OX as O
(0)
X to emphasize the fact that it is a 0-form on Σ. We know that

δO
(0)
X = 0. (6.6)

We can integrate O
(0)
X on any 0-cycle ∆ of Σ (that is evaluate it on a formal sum of points

of Σ), yielding an object

O
(0)
X (∆) =

∮

∆
O

(0)
X . (6.7)

By (6.6), O
(0)
X (∆) satisfies clearly

δO
(0)
X (∆) = 0 (6.8)

and, so, defines a first local δ cohomology class. This class depends only on the homology

class of the 0-cycle ∆, if O
(0)
X (∆) changes by a local δ exact term, when ∆ changes by a

0-boundary. By Stokes’ theorem, this happens provided there exists a local 1-form O
(1)
X

field such that

dO
(0)
X = δO

(1)
X . (6.9)

Let us assume this. We can integrate O
(1)
X on any 1-cycle Γ of Σ (roughly a formal sum of

closed oriented paths on Σ), obtaining an object

O
(1)
X (Γ) =

∮

Γ
O

(1)
X . (6.10)

By (6.9) and Stokes’ theorem, O
(1)
X (Γ) satisfies

δO
(1)
X (Γ) = 0 (6.11)

and, so, defines a second local δ cohomology class. By Stokes’ theorem again, this class

depends only on the homology class of the 1-cycle Γ, if O
(1)
X (Γ) changes by a local δ exact

term, when Γ changes by a 1-boundary. This happens if there is a local 2-form O
(2)
X field

such that

dO
(1)
X = δO

(2)
X . (6.12)

We can integrate O
(2)
X on Σ, yielding

O
(2)
X (Σ) =

∮

Σ
O

(2)
X . (6.13)
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By (6.12) and Stokes’ theorem, O
(2)
X (Σ) satisfies

δO
(2)
X (Σ) = 0 (6.14)

and, so, defines a third δ cohomology class. Clearly, since Σ is 2-dimensional, the iterative

procedure outlined above stops here. Next, let us find expressions for the descendant fields

O
(q)
X , q = 0, 1, 2.

As an ansatz, we write

O
(q)
X =

1

q!(p − q)!
X(q)

b1...bq

a1...ap−q(x)dxb1 . . . dxbqya1
. . . yap−q

, (6.15)

where the tensor X(q)
b1...bq

a1...ap−q is a q-form p − q-vector (i.e. it is antisymmetric in

the upper and lower indices) and q = 0, 1, 2. Then, by (4.4a), (4.4b), the descent equa-

tions (6.6), (6.9), (6.12) hold provided

X(q−1)
b1...bq−1

a1...ap−q+1 − P a1cX(q)
b1...bq−1c

a2...ap−q+1 = 0, (6.16)

for q = 1, 2 and

σPLX(q)
b1...bq

a1...ap−q+1 − (−1)qq∂[b1X
(q−1)

b2...bq ]
a1...ap−q+1 = 0, (6.17)

for q = 0, 1, 2, where, for a generic q-form p-vector Xb1...bq
a1...ap

σPLXb1...bq

a1...ap+1 = −(p + 1)P [a1|c|∂cXb1...bq

a2...ap+1] (6.18)

+
p(p + 1)

2
∂cP

[a1a2Xb1...bq

|c|a3...ap+1] + (−1)q(p + 1)q∂[b1P
[a1|c|Xb2...bq ]c

a2...ap+1].

Above, σPL is the generalized Poisson-Lichnerowicz operator. It acts naturally and is

covariantly defined on the space of q-form p-vectors Xb1...bq

a1...ap satsifying the algebraic

constraint

P abXb1...bq−1b
a1...ap = 0, (6.19)

for q ≥ 1. It can be shown that σPLXb1...bq

a1...ap+1 is a q-form p + 1-vector fulfilling (6.19)

as well and that σPLσPLXb1...bq

a1...ap+2 = 0. Thus, if we denote by
� p

q (M) the space of

q-form p-vector for which (6.19) holds, we have a generalized Poisson-Lichnerowicz q-form

multivector cochain complex (
� ∗

q (M), σPL), and, associated with it, a generalized Poisson-

Lichnerowicz q-form multivector cohomology H∗
PLq(M,P ), for every q ≥ 0. The complex

and its cohomology are trivial for q ≥ 1, if P is pointwise invertible and, so, comes from a

symplectic structure, but they are not so in general.

In (6.17), the tensor X(q)
b1...bq

a1...ap−q satisfies the constraint (6.16) rather than (6.19),

and, therefore, σPLX(q)
b1...bq

a1...ap−q+1 is not covariantly defined. However, the combination

of the two terms of the left hand side of (6.17) is covariant, so that (6.17) makes sense.

We do not know any general conditions ensuring the existence of solutions of the

descent equations (6.16), (6.17). However, it is not difficult to show that there exists a

solution when the p-vector Xa1...ap we start with is of the form #ωa1...ap (cf. eq. (6.5)), for

some closed p-form ωa1...ap ,

∂[a1
ωa2...ap+1] = 0. (6.20)
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Indeed, in this case, the q-form p-vectors

X(q)
b1...bq

a1...ap−q = P a1c1 . . . P ap−qcp−qωb1...bqc1...cp−q
, (6.21)

q = 0, 1, 2, satisfy eqs. (6.16), (6.17), as is straightforward to verify. So, when P ab comes

from a symplectic structure, we recover the usual de Rham descent sequence.

If a q-form p − q-vector X(q)
b1...bq

a1...ap−q satisfies (6.19), then the field O
(q)
X , given

by (6.15), has the property that

δO
(q)
X = O

(q)
σPLX . (6.22)

So, if the generalized Poisson-Lichnerowicz cohomology spaces H
p−q
PLq (M,P ), q = 1, 2, do not

vanish, the descent sequence O
(0)
X (∆), O

(1)
X (Γ), O

(2)
X (Σ) constructed above is not uniquely

determined by Xa1...ap and the cycles ∆, Γ, Σ. This is, we believe, a novel feature of the

biKähler model.

We remark that the cohomological setup expounded above depends on the target space

biKähler geometrical data only through the combination P ab. This reflects the topological

nature of the associated field theory.

Of course, the above analysis does not exhaust the whole local δ cohomology. A

full computation of the cohomology would be interesting, but, unfortunately, it is rather

difficult because δ is nilpotent only on shell.

7. Special biKähler sigma models

In this section, we shall consider the biKähler sigma models associated with the special

biKähler structures considered at the second half of section 2, since we expect these models

to have special properties, which call for a closer inspection. We shall also find that one of

these models is just Witten’s A topological sigma model [1, 2].

We consider first a biKähler structures gab, K±
a
b of the closely related types K, K ′

and P (cf. eqs. (2.12), (2.14)). Recall that a biKähler structure of type K, K ′ corresponds

to an ordinary Kähler structure gab, Ka
b, where Ka

b is given by eq. (2.13). Recall also

that a biKähler structure of type P induces a riemannian product structure gab, La
b, where

La
b is given by eq. (2.15). Finally, recall that a biKähler structure of type K, K ′ is also a

particular biKähler structure of type P for which La
b = δa

b,−δa
b, respectively. Below, for

all these three types of structures, we shall set

Ka
b = K−

a
b (7.1)

and

Λa
b = Λ−

a
b (7.2)

(cf. eqs. (2.13), (2.9)). We further set

Q±
a
b =

1

2
(1 ± L)ab. (7.3)

Q±
a
b is the orthogonal projector on the ±1 eigenbundle of La

b. Q−
a
b = 0, Q+

a
b = 0, when

the type P structure is a type K, K ′ structure, respectively.
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From (3.2), the fields ψa, χa of the associated biKähler sigma models satisfy the

constraints

ψa = Λ
a
b(x)ψb, (7.4a)

χa = Λa
b(x)χb, (7.4b)

for all three types of biKähler structure.

For a type K biKähler structure, the action of the biKähler sigma model (3.3) takes

the form

SK =

∫

Σ

{1

2
(igab(x) − 3Kab(x))∂xa∂xb − igab(x)χaχb (7.5)

+ ψa∇ya + ψa∇ya − Ra
cedK

eb(x)ψcψdyayb

}
.

The symmetry variations (4.4) of the fields become

δxa = −Kab(x)yb, (7.6a)

δya = Γb
adK

dc(x)ybyc, (7.6b)

δψa = Γa
bdK

dc(x)ψbyc + Λ
a
b(x)∂xb, (7.6c)

δχa = Γb
adK

dc(x)χbyc. (7.6d)

For a type K ′ biKähler structure, the action (3.3) takes the simple form

SK ′ =

∫

Σ
i
(
χa∂xa − χa∂xa + ψa∇ya − ψa∇ya

)
. (7.7)

The symmetry variations (4.4) of the fields become

δxa = 0, (7.8a)

δya = 0, (7.8b)

δψa = −iΛ
a
b(x)∂xb, (7.8c)

δχa = −iΛa
b(x)∇yb. (7.8d)

For a type P biKähler structure, the action (3.3) reads as

SP =

∫

Σ

{1

2
(iQ+ab(x) − 3Q+Kab(x))∂xa∂xb − iQ+

ab(x)χaχb (7.9)

+ iQ−
a
b(x)(χa∂xb − χa∂xb) + Q+

a
b(x)(ψb∇ya + ψb∇ya)

+ iQ−
a
b(x)(ψb∇ya − ψb∇ya) − Ra

cedQ+Keb(x)ψcψdyayb

}
.

The symmetry variations (4.4) of the fields become

δxa = −Q+Kab(x)yb, (7.10a)

δya = Γb
adQ+Kdc(x)ybyc, (7.10b)

δψa = Γa
bdQ+Kdc(x)ψbyc + Λ(Q+ − iQ−)ab(x)∂xb, (7.10c)
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δχa = Γb
adQ+Kdc(x)χbyc − iΛQ−a

b(x)∇yb. (7.10d)

It is remarkable that, for the K, K ′ and P models, the gauge fermion Ψ and the

topological action Stop entering the basic relation (5.1) (cf. eqs. (5.3), (5.5), (5.6), (5.7))

do not depend on the choice of the central element Za
b. The gauge fermion is given by the

same expression for the three models

ΨK = ΨK ′ = ΨP =

∫

Σ

i

2
gab(x)(ψa∂xb − ψa∂xb). (7.11)

The topological term is given by

StopK = −

∫

Σ
Kab(x)∂xa∂xb, (7.12)

for the K model

StopK ′ = 0, (7.13)

for the K ′ model, and, finally

StopP = −

∫

Σ
Q+Kab(x)∂xa∂xb, (7.14)

for the P model.

Using the fixed point theorem of ref. [23], or directly from eqs. (5.12), we can write

down with little effort the equations defining the moduli space associated with the K, K ′

and P models. For the K model, they read

Λa
b(x)∂xb = 0, (7.15a)

yb = 0. (7.15b)

For the K ′ model, we find

Λa
b(x)∂xb = 0, (7.16a)

Λa
b(x)∇yb = 0. (7.16b)

Finally, for the P model, we have

Q+Kab(x)yb = 0, (7.17a)

Λ(Q+ + iQ−)ab(x)∂xb = 0, (7.17b)

ΛQ−a
b(x)∇yb = 0. (7.17c)

Let us discuss the above results. In the K model, the field χa is non propagating and

decouples from the rest of the fields in the action, a peculiarity of the K model, which is

not shared by the other biKähler sigma models. Thus, χa may be set to zero

χa = 0. (7.18)

This is consistent with the variation (7.6d). After this is done, by inspection of (7.5), (7.6),

one realizes immediately that K model is nothing but Witten’s A topological sigma model
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[1, 2] up to a few minor differences. In the usual formulation of the A model, instead of

the field ya, one uses the related field

ra = −Kab(x)yb. (7.19)

Its symmetry variation is

δra = 0. (7.20)

Further, the normalization of the topological term is different from the one given here.

From (7.15), we see that the moduli space of the K model classifies holomorphic embeddings

xa of the world sheet Σ into the target manifold M , in agreement with the well known

property of the A model.

By inspecting (7.7), it is easy to see that the K ′ model is nothing but the infinite

radius limit of the A model (in the first order formulism) [1] (see also [25]). So, we may call

it also the A′ model. This is a sort of bc system, though, strictly speaking, it is not, since

the operator ∇ contains a non linear xa dependence via the connection coefficients Γa
bc.

The A′ model has another symmetry besides (7.8). However, this holds only in the infinite

radius limit, in which non invariance terms proportional to gab can be neglected. (7.8),

conversely, is an exact symmetry. From (7.16), it appears the moduli space of the K ′

model classifies pairs (xa, ya) constituted by a holomorphic embedding of Σ into M and a

holomorphic section of x∗ΠT ∗1,0M .

The P model interpolates between the K and K ′ model, to which it reduces, when

La
b = δa

b, − δa
b, respectively. The P model, as far as we know, is not related to any

known topological sigma model. Also its moduli space is apparently unknown.

Consider next a biKähler structure of type HK corresponding to a hyperKähler struc-

ture gab, Ki
a
b (cf. eqs. (2.16), (2.17)). Below, we set

Λ2
a
b = Λ−

a
b. (7.21)

(cf. eq. (2.9)).

For a biKähler type HK target structure, the fields ψa, χa satisfy

ψa = Λ2
a
b(x)ψb, (7.22a)

χa = Λ2a
b(x)χb. (7.22b)

For a type HK biKähler structure, the action (3.3) reads as

SHK =

∫

Σ

{1

4
(igab(x) − 5K2ab(x))∂xa∂xb − igab(x)χaχb (7.23)

+ Sab(x)
(
χa + gac(x)∂xc

)(
χb + gbd(x)∂xd

)

+
1

2
(1 + 2S)ab(x)

(
ψb∇ya + ψb∇ya

)
+ Ra

cedP
eb(x)ψcψdyayb

}
,

where the tensors P a
b, Sa

b are given by

P a
b =

1

2
(K1 − K2)

a
b, (7.24a)
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Sa
b =

1

2
(K1 + K2 + K3)

a
b (7.24b)

The symmetry variations (4.4) of the fields become

δxa = P ab(x)yb, (7.25a)

δya = −Γb
adP

dc(x)ybyc, (7.25b)

δψa = −Γa
bdP

dc(x)ψbyc +
(1

2
Λ2

a
b(x) + F−

a
b(x)

)
∂xb + G−

ab(x)χb, (7.25c)

δχa = −Γb
adP

dc(x)χbyc + F+
b
a(x)∇yb − Rb

d
c
eG+

e
a(x)ψdybyc. (7.25d)

where the tensors F±
a
b, G±

a
b are given by

F±
a
b =

1

4
(K1 + K2 − i ± iK3)

a
b, (7.26a)

G±
a
b =

1

4
(K1 − K2 + i ± iK3)

a
b. (7.26b)

For the HK sigma model, the gauge fermion Ψ and the topological action Stop entering

relation (5.1) (cf. eqs. (5.3), (5.5), (5.6), (5.7)) are given by

ΨHK =

∫

Σ

i

2

[(
gab(x) + H1K3ab(x)

)
(ψa∂xb − ψa∂xb) (7.27)

+ H2
a
b(x)(χaψ

b − χaψ
b)

]
,

where the tensors H1
a
b, H2

a
b are given by

H1
a
b =

1

18
(K1 − 17K2 − 4K3)

a
b, H2

a
b =

1

18
(K1 + K2 + 5K3)

a
b, (7.28)

and

StopHK =

∫

Σ
2Pab(x)∂xa∂xb. (7.29)

The expression of ΨHK is not particularly illuminating, though its complexity may be a

cohomological artifact.

The moduli space of the HK model is defined by the equations

(1

2
Λ2

a
b(x) + F−

a
b(x)

)
∂xb + G−

ab(x)χb = 0, (7.30a)

ya = 0 (7.30b)

obtainable for instance from (5.12), (5.13). These equations are characterized by the ex-

plicit appearance of the field χa, in contrast to what happens for the K, K ′ and P models.

To the best of our knowledge, the HK model is not related to any known topological

sigma model. Also the associated moduli space is apparently unknown. The fact that the

field χa appears explicitly in the moduli space equations (7.30) may indicate that it plays

a role rather different from that it does in the K, K ′ and P models. At this stage, it is

difficult to assess the relevance and even the consistency of the HK model.
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8. Relation to the Hitchin model

In this section, we review briefly the Hitchin sigma model, worked out in refs. [19, 20],

restricting ourselves to the case where the target space generalized complex structure is

actually a generalized Kähler structure [8, 9]. We then show that the action and the sym-

metries of the biKähler sigma model can be obtained by gauge fixing the Batalin-Vilkovisky

master action of the Hitchin model by restricting to a suitably chosen submanifold of field

space, that is lagrangian with respect to the Batalin-Vilkovisky odd symplectic form.

In general, the fields of a 2-dimensional field theory are differential forms on a oriented

2-dimensional manifold Σ. They can be viewed as elements of the space Fun(ΠTΣ) of

functions on the parity reversed tangent bundle ΠTΣ of Σ, which we shall call de Rham

superfields. More explicitly, we associate with the coordinates tα of Σ Grassmann odd

partners τα with deg tα = 0, deg τα = 1. A de Rham superfield ψ(t, τ) is a triplet formed

by a 0–, 1–, 2-form field ψ(0)(t), ψ(1)
α(t), ψ(2)

αβ(t) organized as

ψ(t, τ) = ψ(0)(t) + ταψ(1)
α(t) +

1

2
τατβψ(2)

αβ(t). (8.1)

The forms ψ(0), ψ(1), ψ(2) are called the de Rham components of ψ.

ΠTΣ is endowed with a natural differential d defined by

dtα = τα, dτα = 0. (8.2)

In this way, the exterior differential d of Σ can be identified with the operator

d = τα∂α. (8.3)

The coordinate invariant integration measure of ΠTΣ is

µ = dt1dt2dτ1dτ2. (8.4)

Any de Rham superfield ψ can be integrated on ΠTΣ according to the prescription

∫

ΠTΣ
µ ψ =

∫

Σ

1

2
dtαdtβψ(2)

αβ(t). (8.5)

The components of the relevant de Rham superfields carry, besides the form degree,

also a ghost degree. We shall limit ourselves to homogeneous superfields, that is superfields

ψ for which the sum of the form and ghost degree is the same for the three components

ψ(0), ψ(1), ψ(2) of ψ. The common value of that sum is the superfield (total) degree deg ψ.

It is easy to see that the differential operator d and the integration operator
∫
ΠTΣ µ carry

degree 1 and −2, respectively.

It is often necessary to choose a complex structure on Σ. With this, there are associated

complex coordinates for Σ, z, and their Grassmann odd partners, ζ, and their complex

conjugates. As before, deg z = 0, deg ζ = 1. All the above relations can be written in

terms these coordinates, if one wishes so. Further, once a complex structure is given, we

can define the Cauchy-Riemann operator

∂ = ζ∂z (8.6)
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and its complex conjugate and, with this, a notion of holomorphy for superfields. ∂ has

obviously degree 1.

Now, we shall introduce the Hitchin sigma model [19, 20]. The basic fields of the

model are a degree 0 superembedding x ∈ Γ(ΠTΣ,M) and a degree 1 supersection y ∈

Γ(ΠTΣ, x∗ΠT ∗M), where ΠT ∗M is the parity reversed cotangent bundle of M . With

respect to each local coordinate of M , x, y are given as de Rham superfields xa, ya. The

Batalin-Vilkovisky odd symplectic form is

ΩBV =

∫

ΠTΣ
µ δxaδya, (8.7)

where, here, δ denotes the differential operator in field space. ΩBV is a closed functional

form, δΩBV = 0. In this way, one can define Batalin-Vilkovisky antibrackets ( , )BV in

standard fashion by the formula:

(F,G)BV =

∫

ΠTΣ
µ

[
δrF

δxa

δlG

δya

−
δrF

δya

δlG

δxa

]
, (8.8)

for any two functionals F , G of xa, ya, where the subscripts l, r denote left, right functional

differentiation, respectively.

In the Hitchin sigma model, the target space geometry is specified by a generalized

complex structure J A
B [8]. In the case under our study, the structure J A

B is the gener-

alized Kähler structure corresponding to a biKähler structure gab, K±
a
b [9] and, in block

form, is given by

J A
B =

(
Ja

b P ab

Pab Ja
b

)
, (8.9)

where the tensors Ja
b, P a

b are given by (3.4a). The action of the associated Hitchin model

is

SGK =

∫

ΠTΣ
µ

[1

2
P ab(x)yayb + Ja

b(x)yadxb +
1

2
Pab(x)dxadxb

]
. (8.10)

Actually, in the Hitchin sigma model, as formulated in [19, 20], the action SGK contains an

extra term
∫
ΠTΣ µ yadxa absent here. It is straightforward to see that this omission does not

alter the main property of the model, that is the correspondence between the integrability

conditions of the generalized almost complex structure JA
B and the restrictions on target

space geometry implied by the Batalin-Vilkovisky classical master equation. Indeed, it can

be checked that SGK satisfies the classical Batalin-Vilkovisky master equation

(SGK , SGK)BV = 0, (8.11)

as a consequence of (2.1), (2.2), (2.3).

The Batalin-Vilkovisky variations δBV xa, δBV ya are defined by

δBV xa = (SGK , xa)BV , (8.12a)

δBV ya = (SGK , ya)BV . (8.12b)
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Using (8.10), (8.12), it is straightforward to obtain the explicit expressions of δBV xa, δBV ya

δBV xa = P ab(x)yb + Ja
b(x)dxb, (8.13a)

δBV ya = −Γb
adP

dc(x)ybyc − Γb
adJ

d
c(x)ybdxc + Jb

a(x)∇yb, (8.13b)

where

∇ = d ± Γ·
·a(x)dxa. (8.14)

The operator δBV has degree +1. As is well known, the master equation (8.11) implies

that δBV is nilpotent

δBV
2 = 0. (8.15)

The associated cohomology is the classical Batalin-Vilkovisky cohomology. Also, by (8.11),

one has

δBV SGK = 0. (8.16)

As it is, the action SGK is not suitable for quantization because it possesses a gauge

symmetry as a consequence of (8.16). This gauge symmetry renders the kinetic terms of

the fields ill defined. Gauge fixing is required. (We refer the reader to ref. [26] for an

exhaustive treatment of gauge fixing in the framework of the Batalin-Vilkovisky quanti-

zation algorithm.) As is well known, this is carried out by restricting the action to a

field space submanifold L, that is lagrangian with respect to the Batalin-Vilkovisky odd

symplectic form ΩBV . The resulting quantum field theory does not depend on the choice

of L for continuous deformation of the latter. However, not every choice of L leads to a

well defined quantum field theory. A particular choice of L, then, can be justified only a

posteriori. Below, we shall implement the gauge fixing following closely the methodology

of Alexandrov, Kontsevich, Schwartz and Zaboronsky [22], with which they worked out a

formulation of the A topological sigma model à la Batalin-Vilkovisky.

The definition of L requires the choice of a complex structure on Σ. With this given,

we define the differential operator

D = ζ∂ζ ± Γ·
·a(x)ζ∂ζx

a (8.17)

and its complex conjugate, of degree 0. D turns out to be very useful because of its

remarkable properties. D is a projector, as

D2 = D, (8.18)

as is easy to check. Further, one has
∫

ΠTΣ
µ ψ =

∫

ΠTΣ
µ DDψ, (8.19)

for any superfield ψ of the our sigma model.

The field space submanifold L is defined by the constraints

Λ−
a
b(x)Dxb ' 0, (8.20a)
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Λ−a
b(x)D

[
yb + igbc(x)(∂xc + ∂xc)

]
' 0, (8.20b)

where Λ−
a
b is the projector (2.9). Here and below, the symbol ' denotes equality holding

upon restriction to L in field space. By direct verification, one can show that the Batalin-

Vilkovisky odd symplectic form vanishes on L,

ΩBV ' 0. (8.21)

In more precise terms, it is the the pull-back of ΩBV by the injection ιL of L into field space,

ιL
∗ΩBV , that vanishes. Thus, L is a field space lagrangian submanifold for the Batalin-

Vilkovisky symplectic form ΩBV , as desired. The verification of (8.21) is straightforward

though lengthy. Here, we shall provide a few usefull hints about the way it is carried out.

To controll covariance, one rewrites (8.7) conveniently as

ΩBV =

∫

ΠTΣ
µ δxaδcya, (8.22)

where the covariant variations δcya is given by

δcya = δya − Γb
ac(x)δxcyb. (8.23)

Using (8.19), one has then

ΩBV =

∫

ΠTΣ
µ

[
DDδxaδcya + DδxaDδcya + DδxaDδcya + δxaDDδcya

]
. (8.24)

By applying the operator δ to the constraints (8.20), one obtains relations involving Dδxa,

Dδcya, DDδxa, DDδcya and their complex conjugates, which, together with (8.20), allow

one to show (8.21).

Using (8.19), it is simple to show that

SGK =

∫

ΠTΣ
µ

[
P ab(x)

(
DyaDyb + yaDDyb

)
+ Pab(x)∂xa∂xb (8.25)

+ Ja
b(x)

(
Dya∂xb + Dya∂xb + ya(∇Dxb + ∇Dxb

)]
,

where ∇ is the covariant Cauchy-Riemann operator

∇ = ∂ ± Γ·
·a(x)∂xa (8.26)

and similarly for its complex conjugate.3 Let us call a superfield φ of one of the forms

φ = Dψ, φ = Dψ, φ = DDψ a descendent of ψ. (8.25) shows that SGK is a functional of

the superfields xa, ya both explicitly and implicitly through their descendent superfields

Dxa, Dya and DDya and their complex conjugates. On the lagrangian submanifold L,

the superfields Dxa, Dya and DDya satisfy certain relations entailed by (8.20). A detailed

analysis shows that these relations allow one to express Dxa, Dya and DDya in terms of

the superfields xa, ya and the further superfields

ψa = Λ−
a
b(x)Dxb, (8.27a)

3Here, we are changing our notation with respect to (8.14).
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χa = Λ−a
b(x)Dyb, (8.27b)

explicitly, i.e. without any appearance of their descendent superfields, such as Dψa, Dχa,

etc.:

Dxa ' ψa, (8.28a)

Dya ' χa − iΛ−ab(x)(∂xb + ∇ψb), (8.28b)

DDya ' −Rb
ecdΛ−

e
a(x)ψcψdyb + i(Λ− − Λ−)ab(x)(∇ψb + ∇ψb). (8.28c)

By (8.25), we have therefore,

SGK ' S
gf
GK , (8.29)

where S
gf
GK is an explicit functional of the superfields xa, ya, ψa, χa. From (8.25), it appears

that S
gf
GK depends only on the lowest non zero de Rham components of the superfields xa,

ya, ψa, χa, which we denote xa, ya, ψa, χa. These are precisely the fields of the biKähler

sigma model introduced in section 3. From (8.27), it is evident that ψa, χa obey the

constraints (3.2). Through a detailed calculation, one finds further that, in terms of xa, ya,

ψa, χa, S
gf
GK equals the biKähler sigma model action S given in eq. (3.3). Similarly, one

can derive from the Batalin-Vilkovisky variations (8.13) the symmetry variations (4.4). In

this way, we were able to show the relation of the biKähler sigma model to the Hitchin

sigma model for generalized Kähler target.

The result we have just obtained is interesting in itself, but it is also interesting because

of the light it sheds on the nature of world sheet and target space geometrical data, on which

the quantum field theory associated with biKähler sigma effectively depends. We obtained

the biKähler sigma model by gauge fixing the Hitchin sigma model with generalized Kähler

target following the general prescriptions of Batalin-Vilkovisky formalism. We know in this

way that the resulting gauge fixed field theory depends generically on the geometrical data

contained in the Hitchin sigma model action SGK , but it is independent from those defining

the lagrangian submanifold L [22]. Now, the action SGK has the following structure

SGK = SGK1 + SGK2, (8.30)

where SGK1, SGK2 are given by

SGK1 =

∫

ΠTΣ
µ

[1

2
P ab(x)yayb + Ja

b(x)yadxb
]
, (8.31a)

SGK2 =

∫

ΠTΣ
µ

1

2
Pab(x)dxadxb. (8.31b)

Since Pab is a closed 2-form, SGK2 is just a topological term. As we remarked in section 3,

terms of this type do not affect the field equations and are invariant under all infinitesimal

symmetries. Their values characterize the topological sectors of the field theory, but such

terms in themselves do not affect in any way the quantum structure of the field theory.

Thus, they may be adjusted as one wishes as a matter of definition of the model without re-

ally changing its quantum properties in any essential way. The truly quantum sector of the

field theory stems, upon gauge fixing, from SGK1. This depends only on the combinations
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Ja
b, P ab (cf. eq. (3.4a)) of the target space geometrical data gab, K±

a
b. The lagrangian

submanifold L depends also on the chosen complex structure of Σ and on gab, K−
a
b, but,

for the reasons recalled above, the gauge fixed field theory will not. So, we conclude that

the quantum field theory associated to the biKähler model depends effectively only on the

combinations Ja
b, P ab of target space biKähler geometrical data. This solves the problem

posed in section 5. For the A model, Ja
b = 0, P ab = −Kab. We recover in this way the

well known result that the A model depends only on the target space Kähler structure.

In his thesis [9], Gualtieri showed that a biKähler geometry gab, K±
a
b is fully equivalent

to a pair of commuting generalized complex structures

J1
A

B =

(
Ja

b P ab

Pab Ja
b

)
, J2

A
B =

(
P a

b Jab

Jab Pa
b

)
, (8.32)

whose product −J1
A

CJ2
C

B satisfies a certain positivity condition. The structure J1
A

B

equals the structure J A
B of eq. (8.9) in terms of which the Hitchin model action SGK is

defined. So, we could reformulate the above results saying that the quantum field theory of

the biKähler model depends only on J1
A

B , a fact implicit in the results previously obtained

by several authors [17, 10, 11, 21].

9. Discussion

In this final section, we discuss our results by comparing them with those of other studies,

which have appeared in the literature, and by listing the open problems.

Twisting of the (2,2) supersymmetric biKähler sigma model. We recall [3] that,

for any target space M with biKähler structure gab, K±
a
b, there exists a (2, 2) supersym-

metric sigma model. Its action S may contain a closed 2-form bab, defining a topological

term. Explicitly, in (1, 1) superspace notation, S is given by

S =
1

2

∫
d2σd2θ

(
gab(X) + bab(X)

)
D+XaD−Xb, (9.1)

where Xa is the (1, 1) superfield

Xa = xa + θ+ψa
+ + θ−ψa

− + θ−θ+F a, (9.2)

defining a superembedding of the the (1, 1) superworldsheet into M , and the D± are the

supercovariant derivatives

D± =
∂

∂θ±
+ iθ±∂±, ∂± ≡ ∂0 ± ∂1. (9.3)

The complex structures K±
a
b do not appear in the action, but they enter into the definition

of the (2, 2) supersymmetry variations:

δXa = ε+Q+Xa + ε−Q−Xa + ε̃+K+(X)abQ̃+Xb + ε̃−K−(X)abQ̃−Xb, (9.4)
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where the ε±, ε̃± are anticommuting parameters and

Q± =
∂

∂θ±
− iθ±∂±, Q̃± =

∂

∂θ±
+ iθ±∂±. (9.5)

In refs. [10, 11], Kapustin and Li proposed a twisting prescription to generate a gener-

alized A topological sigma model from the (2, 2) sigma model. After the topological twist,

the fields

r+
a = Λ+

a
b(x)ψ+

b, r+
a = Λ−

a
b(x)ψ−

b (9.6)

become 0-form sections of x∗ΠT
0,1
+ M , x∗ΠT

1,0
− M , while the fields

φ+
a = Λ+

a
b(x)ψ+

b, φ−
a = Λ−

a
b(x)ψ−

b (9.7)

become (0, 1)-, (1, 0)-form sections of x∗ΠT
1,0
+ M , x∗ΠT

0,1
− M , respectively.4 This prescrip-

tion is rather natural, since, as (9.4) shows, the complex structures K±
a
b correspond to

the two world sheet chiralities. It is clear that this field content cannot match the one of

the biKähler model studied in this paper (cf. section 3). Further, according to the same

authors, the topological variations of the fields xa, r±
a are given by

δxa = r+
a + r−

a, (9.8a)

δr±
a = −Γa

bc(x)r∓
br±

c, (9.8b)

with

δ2 = 0. (9.9)

The local observables of the theory are thus of the form

f̂ =
∑

p,q≥0

1

p!q!
fa1···ap;b1···bq

(x)r+
a1 · · · r+

apr−
b1 · · · r−

bq , (9.10)

where the fa1···ap;b1···bq
belong to Ω0,p

+ (M) ⊗ Ωq,0
− (M) and satisfy

pΛ+
c
[a1

∇|c|fa2···ap];b1···bq
+ (−1)pqΛ−

c
[b1∇|cfa1···ap|;b2···bq] = 0. (9.11)

The associated cohomology has no apparent relation with the Poisson-Licnerowicz coho-

mology found in section 6.5

So, seemingly, the construction of Kapustin and Li and ours are fundamentally differ-

ent. As a consequence, our biKähler sigma model has no immediate interpretation as a

twisted form of a (2, 2) supersymmetric sigma model. Of course, one could envisage other

twisting prescriptions, though the one formulated by Kapustin and Li seems to be the

most natural. But this would hardly solve the discrepancy: indeed, there is no field in the

(2, 2) supersymmetric sigma model, which, under twisting, may turn into the χa field of

the biKähler sigma model. As we have seen, χa decouples in the A model, but it does not

so in general.

4The analysis of ref. [11] is actually broader in scope, as it covers the more general case of a bihermitean

target space and also considers a generalized B model.
5In ref. [11], it is shown that this cohomology is the total cohomology of a double cochain complex.
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BiKähler moduli space. The biKähler sigma model is a topological field theory of

cohomological type. It is known that any field theory like that describes the intersection

theory of some moduli space in terms of local quantum field theory. On general grounds,

the moduli space can be defined as the space of solutions of a set of equations, obtainable

using the fixed point theorem of ref. [23]. For the biKähler sigma model, we derived these

equations in section 5, see eqs. (5.12). However, we still do not have any geometrical

interpretation or analytic understanding of this moduli space in general. Moduli spaces

are notoriously subtle geometrical-topological structures. In order to be able to define

intersection theory, one needs to compactify them and there is no unique of doing that in

general. Moreover, they are usually plagued by singularities, which render them hardly

amenable by standard means of analysis. A detailed investigation of these matters would

be required.

BiKähler topological sectors and quantum cohomology. As is well known, the

observables of A topological sigma model form a ring that is isomorphic to a deformation

of the de Rham cohomology ring, going under the name of quantum cohomology [27 – 29].

This turns out to be an important invariant in symplectic geometry. The deformation is

made possible by the fact that the model possesses non trivial topological sectors, with

which there are associated world sheet instantons. Given the close relationship of the

biKähler topological sigma model and the A model, it is natural to expect the biKähler

model to be also characterized by a rich structure of topological sectors and world sheet

instantons. A generalization of quantum cohomology would emerge in this way.

Since biKähler geometry allows one to construct a large number of topological terms

to be added to the sigma model action by hand, the range of possibilities in which the

quantum deformation could be carried out in the biKähler model is far wider than that

of the A model. So, as a preliminary step, it seems that a classification of the meaningful

topological terms would be required.

A biKähler sigma model containing the B model. The authors of ref. [22] were

able to obtain both the A and B topological sigma models by gauge fixing suitable ac-

tions satisfying the Batalin-Vilkovisky master equation associated with the appropriate

odd symplectic form. While the A model has appeared in our analysis as a particular case

of the biKähler model, the B model has been conspicuously absent. Presumably, the B

model can be obtained by gauge fixing the generalized Kähler Hitchin model action SGK in

a way analogous to that followed in section 8. We have not been able to do that so far, due

to our present limited understanding reality conditions of the fields and of the geometry

of the appropriate field space lagrangian submanifold L. This is definitely an issue calling

for further investigation.
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[15] U. Lindström, M. Roček, R. von Unge and M. Zabzine, Generalized Kähler geometry and

manifest N = (2, 2) supersymmetric nonlinear sigma-models, JHEP 07 (2005) 067

[hep-th/0411186].

[16] A. Bredthauer, U. Lindström and J. Persson, First-order supersymmetric sigma models and

target space geometry, hep-th/0508228.

[17] M. Zabzine, Geometry of D-branes for general N = (2, 2) sigma models, Lett. Math. Phys. 70

(2004) 211 [hep-th/0405240].

[18] M. Zabzine, Hamiltonian perspective on generalized complex structure, hep-th/0502137.

[19] R. Zucchini, A sigma model field theoretic realization of Hitchin’s generalized complex

geometry, JHEP 11 (2004) 045 [hep-th/0409181].

[20] R. Zucchini, Generalized complex geometry, generalized branes and the Hitchin sigma model,

JHEP 03 (2005) 022 [hep-th/0501062].

– 28 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C118%2C411
http://xxx.lanl.gov/abs/hep-th/9112056
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB248%2C157
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB343%2C133
http://xxx.lanl.gov/abs/hep-th/9406063
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB562%2C277
http://xxx.lanl.gov/abs/hep-th/9905141
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB548%2C243
http://xxx.lanl.gov/abs/hep-th/0210043
http://xxx.lanl.gov/abs/math.DG/0209099
http://xxx.lanl.gov/abs/math.DG/0401221
http://xxx.lanl.gov/abs/hep-th/0310057
http://xxx.lanl.gov/abs/hep-th/0407249
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB587%2C216
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB587%2C216
http://xxx.lanl.gov/abs/hep-th/0401100
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C257%2C235
http://xxx.lanl.gov/abs/hep-th/0405085
http://xxx.lanl.gov/abs/hep-th/0409250
http://jhep.sissa.it/stdsearch?paper=07%282005%29067
http://xxx.lanl.gov/abs/hep-th/0411186
http://xxx.lanl.gov/abs/hep-th/0508228
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=LMPHD%2CA70%2C211
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=LMPHD%2CA70%2C211
http://xxx.lanl.gov/abs/hep-th/0405240
http://xxx.lanl.gov/abs/hep-th/0502137
http://jhep.sissa.it/stdsearch?paper=11%282004%29045
http://xxx.lanl.gov/abs/hep-th/0409181
http://jhep.sissa.it/stdsearch?paper=03%282005%29022
http://xxx.lanl.gov/abs/hep-th/0501062


J
H
E
P
0
1
(
2
0
0
6
)
0
4
1

[21] S. Chiantese, F. Gmeiner and C. Jeschek, Mirror symmetry for topological sigma models with

generalized Kähler geometry, hep-th/0408169.

[22] M. Alexandrov, M. Kontsevich, A. Schwartz and O. Zaboronsky, The geometry of the master

equation and topological quantum field theory, Int. J. Mod. Phys. A 12 (1997) 1405

[hep-th/9502010].

[23] E. Witten, The n matrix model and gauged WZW models, Nucl. Phys. B 371 (1992) 191.

[24] I. Vaisman, Lectures on the geometry of Poisson manifolds, Progress in Mathematics, 118,
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